Browse IS/STAG - Portál OSU

Skip to page content
Website OSU
Portal title page OSU
Anonymous user Login Česky
Browse IS/STAG
Login Česky
  • Vítejte
  • Browse IS/STAG
  • Applicant
  • Graduate
  • University portal
Vítejte
Browse IS/STAG
Information for applicantsElectronic applicationECTS arrivals
Alumni Club
University portal

1st level navigation

  • Vítejte
  • Browse IS/STAG
  • Applicant
  • Graduate
  • University portal
User disconnected from the portal due to long time of inactivity.
Please, click this link to log back in
(sessions are disconnected after 240 minutes of inactivity. Note that mobile devices may get disconnected even sooner).

Browse IS/STAG (S025)

Help

Main menu for Browse IS/STAG

  • Programmes and specializations.
  • Courses, selected item
  • Departments
  • Lecturers
  • Students
  • Examination dates
  • Timetable events
  • Theses
  • Pre-regist. study groups
  • Rooms
  • Rooms – all year
  • Free rooms – Semester
  • Free rooms – Year
  • Capstone project
  • Times overlap
  •  
  • Title page
  • Calendar
  • Help

Search for a  Course

Print/export:  Bookmark this link in your browser so that you may quickly load this IS/STAG page in the future.

Courses found, count: 1

Search result paging

Found 1 records Export to xls
  Abbreviation unit / Course abbreviation Title Variant
Item shown in detail - course KMA/XMAT2  KMA / XMAT2 Mathematics 2 Show course Mathematics 2 2023/2024

Course info KMA / XMAT2 : Course description

  • Course description , selected item
  • Study programmes, wherein the course is included
  • List of students course
  • Timetable course
  • Examination datesexaminations course
  • Timetable events course
  • Permissions for Course
Department/Unit / Abbreviation KMA / XMAT2 Academic Year 2023/2024
Academic Year 2023/2024
Title Mathematics 2 Form of course completion Exam
Form of course completion Exam
Accredited / Credits Yes, 6 Cred. Type of completion Combined
Type of completion Combined
Time requirements lecture 8 [Hours/Semester] practical class 44 [Hours/Semester] Course credit prior to examination No
Course credit prior to examination No
Automatic acceptance of credit before examination No
Included in study average YES
Language of instruction Czech, English
Occ/max Status A Status A Status B Status B Status C Status C Automatic acceptance of credit before examination No
Summer semester 0 / 0 0 / 0 0 / 0 Included in study average YES
Winter semester 0 / - 0 / - 0 / - Repeated registration NO
Repeated registration NO
Timetable Yes Semester taught Summer semester
Semester taught Summer semester
Minimum (B + C) students not determined Optional course Yes
Optional course Yes
Language of instruction Czech, English Internship duration 0
No. of hours of on-premise lessons Evaluation scale A|B|C|D|E|F
Periodicity every year
Specification periodicity Fundamental theoretical course No
Fundamental course No
Fundamental theoretical course No
Evaluation scale A|B|C|D|E|F
Substituted course None
Preclusive courses KMA/MATA2 and KMA/MATH2 and KMA/MATZ2 and KMA/WMAT2 and KMA/XMAA2 and KMA/2MAT2 and KMA/6MAN2 and KMA/7MAN2 and KMA/7MAT2
Prerequisite courses N/A
Informally recommended courses N/A
Courses depending on this Course N/A
Histogram of students' grades over the years: Graphic PNG ,  XLS
Course objectives:
Primitive function, indefinite integral, methods of integrations, definite integral, geometric meaning of definite integral, application of definite integral.

Requirements on student


The evaluation of the course including the classification is carried out in accordance with the Study and Examination Regulations OU.

Content
1. Definite integral, geometrical meaning of definite integral. The tangent.
2. Physical meaning of definite integral. Computation of average and instantaneous speed.
3. Problem tasks of extrems.
4.Differential calculus of several variables. Partial derivatives. Differential.
5. Tangent of plane, Taylor´s polynomial.
6. Derivation of implicit function.
7. Definite integral. Geometric applications of the definite integral.Computation of a plane geometric shape and volume of the rotating solid.
8. Physical applications of the definite integral. Rectilinear movement path. The work done on a straight path.
9. Integral unlimited function and integral for an unlimited interval.
10. Double and triple integrals and their geometric meaning.
11. - 13. Fundamentals of numerical mathematics


Activities
Fields of study


Guarantors and lecturers
  • Guarantors: prof. RNDr. Jaroslav Hančl, CSc. (100%), 
  • Lecturer: Mgr. Věra Ferdiánová, Ph.D. (100%), 
  • Tutorial lecturer: Mgr. Věra Ferdiánová, Ph.D. (100%), 
Literature
  • Basic: VRBENSKÁ, H. , BĚLOHLÁVKOVÁ, J. Základy matematiky pro bakaláře I.. Ostrava, VŠB, 2003. ISBN 80-248-0519-7.
  • Extending: Jarník, V. Diferenciální počet I. Academia Praha, 1984. ISBN cnb000021007.
  • Extending: Jarník, V. Integrální počet I. Praha: Academia, 1984. ISBN cnb000007988.
  • Extending: REKTORYS,K. A KOLEKTÍV. Přehled užité matematiky. SNTL Praha, 1981 nebo Prometheus Praha, 1995. ISBN 80-85849-92-5.
  • Extending: KOPECKÝ, M., KUBÍČEK, Z. Vybrané kapitoly z matematiky. Praha, SNTL, 1981. ISBN cnb000047484.
  • Recommended: OŠŤÁDALOVÁ, E., ULMANNOVÁ, V. Integrální počet - cvičení pro 1. ročník EkF VŠB. VŠB-TU, Ostrava, 2001. ISBN 80-7078-538-1.
  • Recommended: Breviář vyšší matematiky (Kalus, R., Hrivňák, D.)
  • Recommended: Votava, M. Cvičení z matematické analýzy 3. díl. Skripta PdF OU Ostrava, 1998. ISBN 80-7042-139-8.
  • Recommended: HANČL, J. , ŠUSTEK, J. Matematická analýza 1. OU, Ostrava, 2006.
  • Recommended: HANČL, J. , ŠTĚPNIČKA, J. Matematická analýza 2. OU Ostrava, 2003.
  • Recommended: RÁB, M. Metody řešení obyčejných diferenciálních rovnic. skriptum MU, Brno, 1998. ISBN 80-210-1818-6.
  • Recommended: KALAS, J., RÁB, M. Obyčejné diferenciální rovnice. učebnice MU, Brno, 1995. ISBN 80-210-1130-0.
  • On-line library catalogues
Time requirements
All forms of study
Activities Time requirements for activity [h]
Being present in classes 8
Unaided e-learning tasks completion 24
Consultation of work with the teacher/tutor (incl. electronic) 8
Continuous tasks completion (incl. correspondence tasks) 24
Preparation for an exam 24
Self-tutoring 60
Total 148

Prerequisites

Learning outcomes

Knowledge - knowledge resulting from the course:
Gained competencies
A student has basic knowledge of integral calculus of real functions, of infinite number series and power series and of ODE,
solves particular problems from calculus.

Assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:
Continuous analysis of student´s achievements
Written examination

Teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:
E-learning (tutorial, electronic study materials)
Individual tutoring
Monologic (explanation, lecture, briefing)
Working with text (coursebook, book)
 

Facilities

  • Counselling and Career Centre
  • Pyramida Centre
  • Halls of Residence
  • University Library
  • University e-shop
  • International Office

Prospective students

  • Why study at the UO
  • E-application
  • Study Degree Programme
  • Study Exchange Programme
  • Study PhD Programme
  • How to Apply
  • Contacts for admissions

Students

  • Academic Calendar
  • University ID Cards
  • Students with special needs
  • Student documents and regulations

Alumni

  • Alumni Registration
  • Alumni Portal
  • Alumni Photogallery

Student App

  • For Android
  • For iOS