|
|
Main menu for Browse IS/STAG
Course info
KMA / XMAT2
:
Course description
Department/Unit / Abbreviation
|
KMA
/
XMAT2
|
Academic Year
|
2023/2024
|
Academic Year
|
2023/2024
|
Title
|
Mathematics 2
|
Form of course completion
|
Exam
|
Form of course completion
|
Exam
|
Accredited / Credits
|
Yes,
6
Cred.
|
Type of completion
|
Combined
|
Type of completion
|
Combined
|
Time requirements
|
lecture
8
[Hours/Semester]
practical class
44
[Hours/Semester]
|
Course credit prior to examination
|
No
|
Course credit prior to examination
|
No
|
Automatic acceptance of credit before examination
|
No
|
Included in study average
|
YES
|
Language of instruction
|
Czech, English
|
Occ/max
|
|
|
|
Automatic acceptance of credit before examination
|
No
|
Summer semester
|
0 / 0
|
0 / 0
|
0 / 0
|
Included in study average
|
YES
|
Winter semester
|
0 / -
|
0 / -
|
0 / -
|
Repeated registration
|
NO
|
Repeated registration
|
NO
|
Timetable
|
Yes
|
Semester taught
|
Summer semester
|
Semester taught
|
Summer semester
|
Minimum (B + C) students
|
not determined
|
Optional course |
Yes
|
Optional course
|
Yes
|
Language of instruction
|
Czech, English
|
Internship duration
|
0
|
No. of hours of on-premise lessons |
|
Evaluation scale |
A|B|C|D|E|F |
Periodicity |
every year
|
Specification periodicity |
|
Fundamental theoretical course |
No
|
Fundamental course |
No
|
Fundamental theoretical course |
No
|
Evaluation scale |
A|B|C|D|E|F |
Substituted course
|
None
|
Preclusive courses
|
KMA/MATA2 and KMA/MATH2 and KMA/MATZ2 and KMA/WMAT2 and KMA/XMAA2 and KMA/2MAT2 and KMA/6MAN2 and KMA/7MAN2 and KMA/7MAT2
|
Prerequisite courses
|
N/A
|
Informally recommended courses
|
N/A
|
Courses depending on this Course
|
N/A
|
Histogram of students' grades over the years:
Graphic PNG
,
XLS
|
Course objectives:
|
Primitive function, indefinite integral, methods of integrations, definite integral, geometric meaning of definite integral, application of definite integral.
|
Requirements on student
|
The evaluation of the course including the classification is carried out in accordance with the Study and Examination Regulations OU.
|
Content
|
1. Definite integral, geometrical meaning of definite integral. The tangent. 2. Physical meaning of definite integral. Computation of average and instantaneous speed. 3. Problem tasks of extrems. 4.Differential calculus of several variables. Partial derivatives. Differential. 5. Tangent of plane, Taylor´s polynomial. 6. Derivation of implicit function. 7. Definite integral. Geometric applications of the definite integral.Computation of a plane geometric shape and volume of the rotating solid. 8. Physical applications of the definite integral. Rectilinear movement path. The work done on a straight path. 9. Integral unlimited function and integral for an unlimited interval. 10. Double and triple integrals and their geometric meaning. 11. - 13. Fundamentals of numerical mathematics
|
Activities
|
|
Fields of study
|
|
Guarantors and lecturers
|
|
Literature
|
-
Basic:
VRBENSKÁ, H. , BĚLOHLÁVKOVÁ, J. Základy matematiky pro bakaláře I.. Ostrava, VŠB, 2003. ISBN 80-248-0519-7.
-
Extending:
Jarník, V. Diferenciální počet I. Academia Praha, 1984. ISBN cnb000021007.
-
Extending:
Jarník, V. Integrální počet I. Praha: Academia, 1984. ISBN cnb000007988.
-
Extending:
REKTORYS,K. A KOLEKTÍV. Přehled užité matematiky. SNTL Praha, 1981 nebo Prometheus Praha, 1995. ISBN 80-85849-92-5.
-
Extending:
KOPECKÝ, M., KUBÍČEK, Z. Vybrané kapitoly z matematiky. Praha, SNTL, 1981. ISBN cnb000047484.
-
Recommended:
OŠŤÁDALOVÁ, E., ULMANNOVÁ, V. Integrální počet - cvičení pro 1. ročník EkF VŠB. VŠB-TU, Ostrava, 2001. ISBN 80-7078-538-1.
-
Recommended:
Breviář vyšší matematiky
(Kalus, R., Hrivňák, D.)
-
Recommended:
Votava, M. Cvičení z matematické analýzy 3. díl. Skripta PdF OU Ostrava, 1998. ISBN 80-7042-139-8.
-
Recommended:
HANČL, J. , ŠUSTEK, J. Matematická analýza 1. OU, Ostrava, 2006.
-
Recommended:
HANČL, J. , ŠTĚPNIČKA, J. Matematická analýza 2. OU Ostrava, 2003.
-
Recommended:
RÁB, M. Metody řešení obyčejných diferenciálních rovnic. skriptum MU, Brno, 1998. ISBN 80-210-1818-6.
-
Recommended:
KALAS, J., RÁB, M. Obyčejné diferenciální rovnice. učebnice MU, Brno, 1995. ISBN 80-210-1130-0.
-
On-line library catalogues
|
Time requirements
|
All forms of study
|
Activities
|
Time requirements for activity [h]
|
Being present in classes
|
8
|
Unaided e-learning tasks completion
|
24
|
Consultation of work with the teacher/tutor (incl. electronic)
|
8
|
Continuous tasks completion (incl. correspondence tasks)
|
24
|
Preparation for an exam
|
24
|
Self-tutoring
|
60
|
Total
|
148
|
|
Prerequisites
|
|
Learning outcomes
|
Knowledge - knowledge resulting from the course: |
Gained competencies A student has basic knowledge of integral calculus of real functions, of infinite number series and power series and of ODE, solves particular problems from calculus.
|
|
Assessment methods
|
Knowledge - knowledge achieved by taking this course are verified by the following means: |
Continuous analysis of student´s achievements |
Written examination |
|
Teaching methods
|
Knowledge - the following training methods are used to achieve the required knowledge: |
E-learning (tutorial, electronic study materials) |
Individual tutoring |
Monologic (explanation, lecture, briefing) |
Working with text (coursebook, book) |
|
|
|
|