Browse IS/STAG - Portál OSU

Skip to page content
Website OSU
Portal title page OSU
Anonymous user Login Česky
Browse IS/STAG
Login Česky
  • Vítejte
  • Browse IS/STAG
  • Applicant
  • Graduate
  • University portal
Vítejte
Browse IS/STAG
Information for applicantsElectronic applicationECTS arrivals
Alumni Club
University portal

1st level navigation

  • Vítejte
  • Browse IS/STAG
  • Applicant
  • Graduate
  • University portal
User disconnected from the portal due to long time of inactivity.
Please, click this link to log back in
(sessions are disconnected after 240 minutes of inactivity. Note that mobile devices may get disconnected even sooner).

Browse IS/STAG (S025)

Help

Main menu for Browse IS/STAG

  • Programmes and specializations.
  • Courses, selected item
  • Departments
  • Lecturers
  • Students
  • Examination dates
  • Timetable events
  • Theses
  • Pre-regist. study groups
  • Rooms
  • Rooms – all year
  • Free rooms – Semester
  • Free rooms – Year
  • Capstone project
  • Times overlap
  •  
  • Title page
  • Calendar
  • Help

Search for a  Course

Print/export:  Bookmark this link in your browser so that you may quickly load this IS/STAG page in the future.

Courses found, count: 1

Search result paging

Found 1 records Export to xls
  Abbreviation unit / Course abbreviation Title Variant
Item shown in detail - course KIP/QDUIT  KIP / QDUIT Artificial Intelligence Show course Artificial Intelligence 2023/2024

Course info KIP / QDUIT : Course description

  • Course description , selected item
  • Study programmes, wherein the course is included
  • List of students course
  • Timetable course
  • Examination datesexaminations course
  • Timetable events course
  • Permissions for Course
Department/Unit / Abbreviation KIP / QDUIT Academic Year 2023/2024
Academic Year 2023/2024
Title Artificial Intelligence Form of course completion Exam
Form of course completion Exam
Accredited / Credits Yes, 10 Cred. Type of completion Combined
Type of completion Combined
Time requirements lecture 1 [Hours/Week] seminar 1 [Hours/Week] Course credit prior to examination Yes
Course credit prior to examination Yes
Automatic acceptance of credit before examination No
Included in study average YES
Language of instruction -
Occ/max Status A Status A Status B Status B Status C Status C Automatic acceptance of credit before examination No
Summer semester 0 / - 1 / - 0 / - Included in study average YES
Winter semester 0 / 0 0 / - 0 / 0 Repeated registration NO
Repeated registration NO
Timetable Yes Semester taught Winter + Summer
Semester taught Winter + Summer
Minimum (B + C) students not determined Optional course No
Optional course No
Language of instruction - Internship duration 0
No. of hours of on-premise lessons Evaluation scale A|B|C|D|E|F
Periodicity every year Evaluation scale for credit before examination S|N
Specification periodicity Fundamental theoretical course No
Fundamental course Yes
Fundamental theoretical course No
Evaluation scale A|B|C|D|E|F
Evaluation scale for credit before examination S|N
Substituted course None
Preclusive courses N/A
Prerequisite courses N/A
Informally recommended courses N/A
Courses depending on this Course N/A
Histogram of students' grades over the years: Graphic PNG ,  XLS
Course objectives:
Poskytnout studentům doktorských studijních programů širší pohled na oblast umělé inteligence.

Requirements on student
Vypracovat a obhájit semestrální práci. Tato aktivita je ohodnocena maximálně 60 body. Ústní část zkoušky je pak hodnocena 40 body.

Content
1. Moderní trendy umělé inteligence.
2. Umělý život a automaty.
3. Multiagentní systémy.
4. Strojové učení.
5. Reprezentace znalostí v UI a klasifikace.
6. Expertní systémy.
7. Robotika.
8. Řešení úloh v UI.

Jednotlivá témata budou specifikována s ohledem na náplň disertační práce.

Activities
Fields of study


Guarantors and lecturers
  • Guarantors: doc. RNDr. Martin Kotyrba, Ph.D. (100%), 
  • Lecturer: doc. RNDr. Martin Kotyrba, Ph.D. (100%), 
  • Seminar lecturer: doc. RNDr. Martin Kotyrba, Ph.D. (100%), 
Literature
  • Basic: Martin Kotyrba. Umělá inteligence - Rozpoznávání vzorů v dynamických datech. Praha, 2014. ISBN 978-80-7300-497-2.
  • Extending: Stuart Russell. Artificial Intelligence: A Modern Approach. England, 2015. ISBN 978-1-292-15396-4.
  • Recommended: Jerry Kaplan. Artificial Intelligence: What Everyone Needs to Know. England, 2016. ISBN 9780190602390.
  • Recommended: Mařík, V. a kol. Umělá inteligence, díl IV.. ACADEMIA Praha, 2003. ISBN 80-200-1044-0.
  • Recommended: Mařík, V. a kol. Umělá inteligence, díl V.. ACADEMIA Praha, 2007. ISBN 978-80-200-1470-2.
  • On-line library catalogues
Time requirements
All forms of study
Activities Time requirements for activity [h]
Presentation (of works, projects, etc.) 30
Self-tutoring 100
Preparation for an exam 70
Consultation of work with the teacher/tutor (incl. electronic) 40
Semestral work 60
Total 300

Prerequisites

Competences - students are expected to possess the following competences before the course commences to finish it successfully:
Bez předpokladů.

Learning outcomes

Knowledge - knowledge resulting from the course:
Student umí:
- aplikovat vybrané metody umělé inteligence při řešení úloh.
Skills - skills resulting from the course:
Student zná:
- implementovat vybrané metody z oblasti umělé inteligence.

Assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:
IC6 - Oral examiantion
IIA6 - Project (outcome of project education)

Teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:
B1 - Discussion
F7 - Creation of expert documentation
G2 - Self-study, controlled study
 

Facilities

  • Counselling and Career Centre
  • Pyramida Centre
  • Halls of Residence
  • University Library
  • University e-shop
  • International Office

Prospective students

  • Why study at the UO
  • E-application
  • Study Degree Programme
  • Study Exchange Programme
  • Study PhD Programme
  • How to Apply
  • Contacts for admissions

Students

  • Academic Calendar
  • University ID Cards
  • Students with special needs
  • Student documents and regulations

Alumni

  • Alumni Registration
  • Alumni Portal
  • Alumni Photogallery

Student App

  • For Android
  • For iOS